M1W AI+lOT Module K210 Deep learning
Rated 3.5/5 based on 11 customer reviews

M1W AI+lOT Module K210 Deep learning

Available: Out of Stock
Wishlist
$13.99 $19.99
Successful pre-order.Thanks for contacting us!
Introduction
AI chip normally refers to ASIC chip that aims at AI algorithms. Although the conventional CPU and GPU can be used to execute AI algorithms, they have been greatly limited in their speed, performance, and practicality. Compared with traditional processor chip, AI chip offers faster speed, more computing power, and low energy consumption.
This product employs AI chip K210 as the core unit. K210 comes with dual-core processors with independent FPU, 64 bits CPU bit width, 8MB on-chip SRAM, 400M adjustable nominal frequency, and double precision FPU supporting multiplication, division, and square root operation.
The AI Module-M1 is equipped with neural network hardware accelerator KPU, voice processing unit (APU), programmable IO array (FPIOA/IOMUX) and Fast Fourier Transform Accelerator. In the AI processing, K210 can perform operations such as convolution, batch normalization, activation, and pooling. At the same time, the pre-processing of voice direction scanning and voice data output can also be performed.
M1W module has WIFI function based on M1chip.
Features
CPU: RISC-V dual-core 64 bit
400Mhz standard frequency (overclockable)
Debugging Support: high-speed UART and JTAG interface for debugging
Neural Network Processor: each payer of convolutional neural network parameter can be configured separately, including the number of inpu and output channels, and the input and output line width and column height.
Support for 1¡Á1 and 3¡Á3 convolution kernels
Image Recognition: QVGA@60FPS/VGA@30FPS
Audio Processor: support up to 8 channels of audio input data, ie 4 stereo channels
16 bit wide internal audio signal processing
Support for 12 bit, 16 bit, 24 bit and 32 bit input data widths
Up to 192KHz sample rate
Static Random-Access Memory(SRAM): the SRAM is split into two parts, 6MiB of on-chip general-purpose SRAM and 2 MiB of on-chip AI SRAM
Field Programmable IO Array: FPIOA allows users to map 255 internal functions to 48 free IOs on the chip
Digital Video Port: maximum frame size 640 x 480
FFT Accelerator: the FFT accelerator is a hardware implementation of the Fast Fourier Transform(FFT)
Deep Learning: TensorFlow/Keras/Darknet
Peripherals: FPIOA, UART, GPIO, SPI, I2C, I2S, WDT, TIMER, RTC, etc.
WiFi: support 2.4G 802.11.b/g/n
Specification
Dimension: 25.4 25.4 3.3mm/110.13"
72-pin Full Lead-out
Input Voltage: 5.0V¡À0.2V(DC)
Input Current: >300mA(5V)
Operating Temperature: -30oC~85oC
Compliant with IEEE754-2008 Standard
MCU: ESP8285 Tensilica L106 32-bit MCU
Wireless Standard: 802.11b/g/n
Frequency Range: 2400Mhz-2483.5Mhz
Transmit Power(Conduction Test): 802.11.b£º+15dBm
802.11.g£º+10dBm(54Mbps)
802.11.n£º+10dBm(65Mbps)
WiFi Mode: Station/SoftAP/SoftAP+Station
Communication Interface: serial port
Shipping List
AI Module-M1W x1
Introduction
AI chip normally refers to ASIC chip that aims at AI algorithms. Although the conventional CPU and GPU can be used to execute AI algorithms, they have been greatly limited in their speed, performance, and practicality. Compared with traditional processor chip, AI chip offers faster speed, more computing power, and low energy consumption.
This product employs AI chip K210 as the core unit. K210 comes with dual-core processors with independent FPU, 64 bits CPU bit width, 8MB on-chip SRAM, 400M adjustable nominal frequency, and double precision FPU supporting multiplication, division, and square root operation.
The AI Module-M1 is equipped with neural network hardware accelerator KPU, voice processing unit (APU), programmable IO array (FPIOA/IOMUX) and Fast Fourier Transform Accelerator. In the AI processing, K210 can perform operations such as convolution, batch normalization, activation, and pooling. At the same time, the pre-processing of voice direction scanning and voice data output can also be performed.
M1W module has WIFI function based on M1chip.
Features
CPU: RISC-V dual-core 64 bit
400Mhz standard frequency (overclockable)
Debugging Support: high-speed UART and JTAG interface for debugging
Neural Network Processor: each payer of convolutional neural network parameter can be configured separately, including the number of inpu and output channels, and the input and output line width and column height.
Support for 1¡Á1 and 3¡Á3 convolution kernels
Image Recognition: QVGA@60FPS/VGA@30FPS
Audio Processor: support up to 8 channels of audio input data, ie 4 stereo channels
16 bit wide internal audio signal processing
Support for 12 bit, 16 bit, 24 bit and 32 bit input data widths
Up to 192KHz sample rate
Static Random-Access Memory(SRAM): the SRAM is split into two parts, 6MiB of on-chip general-purpose SRAM and 2 MiB of on-chip AI SRAM
Field Programmable IO Array: FPIOA allows users to map 255 internal functions to 48 free IOs on the chip
Digital Video Port: maximum frame size 640 x 480
FFT Accelerator: the FFT accelerator is a hardware implementation of the Fast Fourier Transform(FFT)
Deep Learning: TensorFlow/Keras/Darknet
Peripherals: FPIOA, UART, GPIO, SPI, I2C, I2S, WDT, TIMER, RTC, etc.
WiFi: support 2.4G 802.11.b/g/n
Specification
Dimension: 25.4 25.4 3.3mm/110.13"
72-pin Full Lead-out
Input Voltage: 5.0V¡À0.2V(DC)
Input Current: >300mA(5V)
Operating Temperature: -30oC~85oC
Compliant with IEEE754-2008 Standard
MCU: ESP8285 Tensilica L106 32-bit MCU
Wireless Standard: 802.11b/g/n
Frequency Range: 2400Mhz-2483.5Mhz
Transmit Power(Conduction Test): 802.11.b£º+15dBm
802.11.g£º+10dBm(54Mbps)
802.11.n£º+10dBm(65Mbps)
WiFi Mode: Station/SoftAP/SoftAP+Station
Communication Interface: serial port
Shipping List
AI Module-M1W x1

RETURNS POLICY

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum. Duis congue posuere libero, a aliquam est porta quis.

Donec ullamcorper magna enim, vitae fermentum turpis elementum quis. Interdum et malesuada fames ac ante ipsum primis in faucibus.

Curabitur vel sem mi. Proin in lobortis ipsum. Aliquam rutrum tempor ex ac rutrum. Maecenas nunc nulla, placerat at eleifend in, viverra etos sem. Nam sagittis lacus metus, dignissim blandit magna euismod eget. Suspendisse a nisl lacus. Phasellus eget augue tincidunt, sollicitudin lectus sed, convallis desto. Pellentesque vitae dui lacinia, venenatis erat sit amet, fringilla felis. Nullam maximus nisi nec mi facilisis.

SHIPPING

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum. Duis congue posuere libero, a aliquam est porta quis.

Donec ullamcorper magna enim, vitae fermentum turpis elementum quis. Interdum et malesuada fames ac ante ipsum primis in faucibus.

Curabitur vel sem mi. Proin in lobortis ipsum. Aliquam rutrum tempor ex ac rutrum. Maecenas nunc nulla, placerat at eleifend in, viverra etos sem. Nam sagittis lacus metus, dignissim blandit magna euismod eget. Suspendisse a nisl lacus. Phasellus eget augue tincidunt, sollicitudin lectus sed, convallis desto. Pellentesque vitae dui lacinia, venenatis erat sit amet, fringilla felis. Nullam maximus nisi nec mi facilisis.