Lilypad Simple Board for Arduino
- Product SKU: DF_DFR0168
- Category: Arduino, Development Platform
- Order within
This is the Lilypad Simple Board for Arduino. It's controlled by an ATmega328 with the Arduino bootloader. It has fewer pins than the LilyPad Arduino Main Board, a built-in power supply socket, and an on/off switch. Any of our LiPo batteries can be plugged right into the socket. The Simple board is designed to streamline your next sewable project by keeping things simple and giving you more room to work and eliminating the need to sew a power supply. This revision does away with the ISP header and adds a charging circuit based on the MCP73831 IC.
LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They're even washable!
Applications
LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They're even washable!Specification
ATmega328 running at 8MHz
6 Digital pins(pin 5,6,9,10,11,12,13)
4 Analog pins(pin 2,3,4,5)
Interface: UART
50mm outer diameter
Thin 0.8mm(0.03") PCB
Shipping List
Lilypad Simple Board for Arduino x1
This is the Lilypad Simple Board for Arduino. It's controlled by an ATmega328 with the Arduino bootloader. It has fewer pins than the LilyPad Arduino Main Board, a built-in power supply socket, and an on/off switch. Any of our LiPo batteries can be plugged right into the socket. The Simple board is designed to streamline your next sewable project by keeping things simple and giving you more room to work and eliminating the need to sew a power supply. This revision does away with the ISP header and adds a charging circuit based on the MCP73831 IC.
LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They're even washable!
Applications
LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They're even washable!Specification
ATmega328 running at 8MHz
6 Digital pins(pin 5,6,9,10,11,12,13)
4 Analog pins(pin 2,3,4,5)
Interface: UART
50mm outer diameter
Thin 0.8mm(0.03") PCB
Shipping List
Lilypad Simple Board for Arduino x1
RETURNS POLICY
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum. Duis congue posuere libero, a aliquam est porta quis.
Donec ullamcorper magna enim, vitae fermentum turpis elementum quis. Interdum et malesuada fames ac ante ipsum primis in faucibus.
Curabitur vel sem mi. Proin in lobortis ipsum. Aliquam rutrum tempor ex ac rutrum. Maecenas nunc nulla, placerat at eleifend in, viverra etos sem. Nam sagittis lacus metus, dignissim blandit magna euismod eget. Suspendisse a nisl lacus. Phasellus eget augue tincidunt, sollicitudin lectus sed, convallis desto. Pellentesque vitae dui lacinia, venenatis erat sit amet, fringilla felis. Nullam maximus nisi nec mi facilisis.
SHIPPING
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum. Duis congue posuere libero, a aliquam est porta quis.
Donec ullamcorper magna enim, vitae fermentum turpis elementum quis. Interdum et malesuada fames ac ante ipsum primis in faucibus.
Curabitur vel sem mi. Proin in lobortis ipsum. Aliquam rutrum tempor ex ac rutrum. Maecenas nunc nulla, placerat at eleifend in, viverra etos sem. Nam sagittis lacus metus, dignissim blandit magna euismod eget. Suspendisse a nisl lacus. Phasellus eget augue tincidunt, sollicitudin lectus sed, convallis desto. Pellentesque vitae dui lacinia, venenatis erat sit amet, fringilla felis. Nullam maximus nisi nec mi facilisis.