M1 AI+lOT Module K210 Deep learning
- Product SKU: DF_DFR0636
- Category: Development Platform
- Order within
AI chip normally refers to ASIC chip that aims at AI algorithms. Although the conventional CPU and GPU can be used to execute AI algorithms, they have been greatly limited in their speed, performance, and practicality. Compared with traditional processor chip, AI chip offers faster speed, more computing power, and low energy consumption.
This product employs AI chip K210 as the core unit. K210 comes with dual-core processors with independent FPU, 64 bits CPU bit width, 8MB on-chip SRAM, 400M adjustable nominal frequency, and double-precision FPU supporting multiplication, division, and square root operation.
The AI Module-M1 is equipped with neural network hardware accelerator KPU, voice processing unit (APU), programmable IO array (FPIOA/IOMUX), and Fast Fourier Transform Accelerator. In the AI processing, K210 can perform operations such as convolution, batch normalization, activation, and pooling. At the same time, the pre-processing of voice direction scanning and voice data output can also be performed.
Features
CPU: RISC-V dual-core 64bit
400MHz Frequency (overclockable)
Debugging Support: high-speed UART and JTAG interface for debugging
Neural Network Processor: each layer of convolutional neural network parameter can be configured separately, including the number of input and output channels, and the input and output line width and column height.
support for 1¡Á1 and 3¡Á3 convolution kernels
Image Recognition: QVGA@60FPS/VGA@30FPS
Audio Processor: support up to 8 channels of audio input data, ie 4 stereo channels
16 bit wide internal audio signal processing
support for 12-bit, 16-bit, 24-bit, and 32-bit input data widths
Up to 192KHz sample rate
Static Random-Access Memory (SRAM): the SRAM is split into two parts, 6MiB of on-chip general-purpose SRAM memory and 2 MiB of on-chip AI SRAM memory
Field-Programmable IO Array: FPIOA allows users to map 255 internal functions to 48 free IOs on the chip
Digital Video Port: maximum frame size 640x480
FFT Accelerator: the FFT accelerator is a hardware implementation of the Fast Fourier Transform(FFT)
Deep Learning Frame: TensorFlow/Keras/Darknet
Peripherals: FPIOA, UART, GPIO, SPI, I2C, I2S, WDT, TIMER, RTC, etc
Specification
Dimension: 25.4 25.4 3.3mm/110.13"
72-pin Full Pin Lead-out
Input Voltage: 5.0V¡À0.2V(DC)
Input Current: >300mA(5V)
Operating Temperature: -30oC~85oC
Compliant With IEEE754-2008 Standard
Shipping List
AI Module-M1 x1
AI chip normally refers to ASIC chip that aims at AI algorithms. Although the conventional CPU and GPU can be used to execute AI algorithms, they have been greatly limited in their speed, performance, and practicality. Compared with traditional processor chip, AI chip offers faster speed, more computing power, and low energy consumption.
This product employs AI chip K210 as the core unit. K210 comes with dual-core processors with independent FPU, 64 bits CPU bit width, 8MB on-chip SRAM, 400M adjustable nominal frequency, and double-precision FPU supporting multiplication, division, and square root operation.
The AI Module-M1 is equipped with neural network hardware accelerator KPU, voice processing unit (APU), programmable IO array (FPIOA/IOMUX), and Fast Fourier Transform Accelerator. In the AI processing, K210 can perform operations such as convolution, batch normalization, activation, and pooling. At the same time, the pre-processing of voice direction scanning and voice data output can also be performed.
Features
CPU: RISC-V dual-core 64bit
400MHz Frequency (overclockable)
Debugging Support: high-speed UART and JTAG interface for debugging
Neural Network Processor: each layer of convolutional neural network parameter can be configured separately, including the number of input and output channels, and the input and output line width and column height.
support for 1¡Á1 and 3¡Á3 convolution kernels
Image Recognition: QVGA@60FPS/VGA@30FPS
Audio Processor: support up to 8 channels of audio input data, ie 4 stereo channels
16 bit wide internal audio signal processing
support for 12-bit, 16-bit, 24-bit, and 32-bit input data widths
Up to 192KHz sample rate
Static Random-Access Memory (SRAM): the SRAM is split into two parts, 6MiB of on-chip general-purpose SRAM memory and 2 MiB of on-chip AI SRAM memory
Field-Programmable IO Array: FPIOA allows users to map 255 internal functions to 48 free IOs on the chip
Digital Video Port: maximum frame size 640x480
FFT Accelerator: the FFT accelerator is a hardware implementation of the Fast Fourier Transform(FFT)
Deep Learning Frame: TensorFlow/Keras/Darknet
Peripherals: FPIOA, UART, GPIO, SPI, I2C, I2S, WDT, TIMER, RTC, etc
Specification
Dimension: 25.4 25.4 3.3mm/110.13"
72-pin Full Pin Lead-out
Input Voltage: 5.0V¡À0.2V(DC)
Input Current: >300mA(5V)
Operating Temperature: -30oC~85oC
Compliant With IEEE754-2008 Standard
Shipping List
AI Module-M1 x1
RETURNS POLICY
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum. Duis congue posuere libero, a aliquam est porta quis.
Donec ullamcorper magna enim, vitae fermentum turpis elementum quis. Interdum et malesuada fames ac ante ipsum primis in faucibus.
Curabitur vel sem mi. Proin in lobortis ipsum. Aliquam rutrum tempor ex ac rutrum. Maecenas nunc nulla, placerat at eleifend in, viverra etos sem. Nam sagittis lacus metus, dignissim blandit magna euismod eget. Suspendisse a nisl lacus. Phasellus eget augue tincidunt, sollicitudin lectus sed, convallis desto. Pellentesque vitae dui lacinia, venenatis erat sit amet, fringilla felis. Nullam maximus nisi nec mi facilisis.
SHIPPING
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum. Duis congue posuere libero, a aliquam est porta quis.
Donec ullamcorper magna enim, vitae fermentum turpis elementum quis. Interdum et malesuada fames ac ante ipsum primis in faucibus.
Curabitur vel sem mi. Proin in lobortis ipsum. Aliquam rutrum tempor ex ac rutrum. Maecenas nunc nulla, placerat at eleifend in, viverra etos sem. Nam sagittis lacus metus, dignissim blandit magna euismod eget. Suspendisse a nisl lacus. Phasellus eget augue tincidunt, sollicitudin lectus sed, convallis desto. Pellentesque vitae dui lacinia, venenatis erat sit amet, fringilla felis. Nullam maximus nisi nec mi facilisis.